
Building a Smart Sensor using Windows CE

Ganesh Gopalan

COAS, Oregon State University

104 Ocean Administration Building

Corvallis OR-97333

Abstract: In this paper we discuss how to develop a smart
instrument i.e. one that has built in scientific logic that allows it
to behave intelligently. The instrument will be capable of
providing near-real time updates and respond directly to user
requests for data. We demonstrate this technique using a Davis
Instrument as the "sensor" that is connected to an SBC
MediaGX processor board running Windows CE 3.0. The board
supports 100 base-T Ethernet and TCP/IP. Communication with
the Davis Instrument is through serial I/O. Requests for data are
sent to the instrument over a serial interface. Specific tasks in
the project included making hardware connections between the
various components and software configuration on the device. A
host PC is also set up for the development and transfer of
embedded software using ActiveSync. The tools used include
Embedded Visual C++ 3.0 and other remote tools for editing
files and working with the registry. Software approaches
explored to provide access to the data include ASP, DCOM and
XML data sources. A server on the Windows CE device
connects to the Davis Instrument and logs temperature, pressure
and humidity values to a file. Data is also recorded as XML. The
server also exposes a COM interface so that a remote DCOM
client can connect to it and read the data. The frequency with
which values are logged can be changed remotely. Plots of the
data are also supported using MATLAB on the host PC. Pre-
defined conditions that occur in the data can be detected using
XML and XSL and the user can be alerted when they occur.

I. INTRODUCTION

A key component to data access and event detection in
Earth Science is how fast the data becomes available to client
applications. As technology improves, it is becoming
increasingly easy to get data directly from its source. In this
paper we demonstrate how data can be accessed directly from
an instrument in a near-real-time fashion using an embedded
operating system. Remote control of the instrument is also
demonstrated. We illustrate a solution that uses a Davis
Instrument but the technique can easily be extended to other
sensors.

II. GOALS

The goals for this project are:

• To demonstrate how an instrument can be made
accessible through the Web.

• To demonstrate how data from an instrument can be
accessed in a near real-time manner.

• To provide a means of controlling the instrument
from a remote location.

III. PROJECT DESCRIPTION

We now discuss the selection of hardware, operating
systems, software tools and architectures for the system.
Hardware and software configuration are also covered. In this
paper, “Windows CE device”, “embedded device”, “device”,
“SBC MediaGX” all refer to the piece of hardware that is
connected to the Davis Instrument unless otherwise specified.

A. Selecting Hardware

After looking at a variety of embedded hardware available,
the SBC-Media GX by Arcom Control Systems was selected.
The reasons for this choice are discussed below.

The SBC (Single Board Computer) Media-GX is an EBX

compliant board based on the MMX-enhanced 233 MHz
Geode processor. The kit contains a complete set of
components to enable the rapid development of new
Windows CE applications. The board has 32 MB DRAM and
16MB flash supported as standard memory with expansion up
to 128 MB DRAM. Standard peripheral I/O ports supported
by the SBC Media GX include dual USB connectors, 10/100
base-TX Ethernet, four fast serial ports, floppy disk drive &
IDE interfaces. Standard PC type mouse and keyboard ports
are supplied via PS/2 mini DIN connectors. The kit also
included a flat panel display.

B. Selecting an Operating System

The development of this device started with choosing an
appropriate embedded operating system. The focus was on
two operating systems, Windows CE 3.0 and Windows NT

Embedded 4.0, since there existed a number of proven
products developed using these two operating systems.
Windows CE 3.0 was eventually selected since Windows NT
Embedded 4.0 is not suitable for battery-powered devices and
its memory requirements were greater than that of CE.
Windows NT Embedded 4.0 required 12 MB of RAM and 8
MB of persistent storage while Windows CE 3.0 required a
minimum of 450 KB of RAM and 350 KB for storage.

We now give a brief overview of Windows CE 3.0.
Windows CE is an open, scalable, 32-bit operating system
that is designed to meet the needs of a broad range of
intelligent devices [1]. It provides a powerful set of features
and tools including:

• A highly modular architecture to rapidly configure
an operating system from over 200 pre-built and
extensible modules.

• Real time support.
• Flash memory support for diskless operation.
• Supports advanced application services like DCOM,

ADO and MSMQ.
• Rich Internet services with HTTP 1.0 server for

serving HTML, ideal for simplified remote device
management.

• Supports latest communication and networking
technologies.

C. Setting up the Hardware

Fig. 1 shows a picture of the Windows CE device. Refer to
Fig. 2 for the hardware configuration. The system supports
PC style peripherals such as a keyboard and mouse for input.
A flat panel display is also connected to the board. A host PC
is connected to the system using a serial interface. The PC is
used to develop embedded programs and transfer them onto
the device.

The Davis Instrument is also connected to the system by a
serial cable. Commands and data are sent over this cable.
The device also has an on- board Ethernet connector that is
used to plug the device into the Local Area Network.

D. Configuring the System

The SBC MediaGX processor board comes pre-installed
with Windows CE 3.0. There are a few things that need to be
done on the device before embedded programs can be
deployed on the system. These include the following:

Fig. 1. The SBC MediaGX board with hardware connections.

• Saving the registry - this is done when system
parameters, such as HTTP settings, are changed.

• Setting up a COM port – a COM port must be
configured to make a connection to the host PC.

• Setting up an ActiveSync connection to the host PC
– ActiveSync facilitates the synchronization of data
between a desktop and a companion application
running on the Windows CE device [2]. Once a
partnership is established with the host machine,
files and/or data can be exchanged between the two
systems using this connection.

• Ethernet connection – network parameters such as
IP addresses are configured here.

E. Setting up the Host PC

The host PC is the system where all software development
is done including writing and compiling embedded programs.
Once an ActiveSync connection is established with the host
PC, data and files can be moved between the host PC and the
system using the connection.

Software tools used in embedded development such as
Windows CE Platform Builder 3.0 and Microsoft Embedded
Visual Tools are installed on this machine. The latter
includes Embedded Visual C++ 3.0, Remote File Viewer,
Remote Process Viewer, Remote Registry Editor and Remote
Heap Walker. One or more of these tools maybe used during
the software development process.

F. Programming Environments

Both Embedded Visual Basic and Embedded Visual C++
can be used for building embedded software. However, based
on the type of software components that were required,
Embedded Visual C++ was the primary programming
environment. We do not use Platform Builder to generate and
upload an image of the operating system onto the device
since the hardware comes pre-installed with the O/S.
However, remote tools accessible from within Platform
Builder are used when required.

G. Developing Embedded Projects

Embedded Visual C++ 3.0 is used to build executables or
dynamic link libraries for the Windows CE device. First a
Windows CE platform is selected from available types (such
as Palm-size PC 2.11 or Pocket PC 3.0). Next, the
programming environment needs to be configured with the
appropriate paths for header and library files used when
compiling and linking code. These files have to be installed
from the Arcom installation CD. Project Settings have to be
created for each project as appropriate. These include
Preprocessor and Linker Settings that may point to the

MediaGX header files/libraries and any flags specific to the
Windows CE architecture. The project is then compiled. The
resulting binary can be tested using an emulator if required.
Finally the binary is transferred to the device using Remote
File Viewer for further testing and deployment.

H. Software Architectures

The goal here was to explore different methods of
accessing data from a file on the device before actually
logging and retrieving readings from the Davis Instrument.
We tried to take advantage of the fact that the Windows CE
device supports a web server.

The methods explored were:

1. Active Server Pages (ASP)
2. Internet Server API (ISAPI)
3. Distributed COM (DCOM)

Using ASP:

A built-in Visual Basic COM object created using ASP
was used to access the file system on the device. This method
seemed to fail because of security reasons and the Windows
CE documentation did not help resolve this.

Using ISAPI:

This was similar to ASP except that the piece of code that
accessed the file system was written in C++ and loaded in to
the address space of the web-server as a dynamically linked
library (DLL). This method did not work either because the
DLL would not load due to security reasons.

Using DCOM:

This technique seemed to work the best. Here, the PC
client launches a DCOM object that accesses the file system
on the device. The contents of the file are returned as a
method argument.

Eventually, two approaches were implemented. One was to

use a DCOM client on the host PC that connects to a DCOM
server running on the device to get the data while the second
approach was to read the data directly from the device in the
form of XML. The DCOM client is in the form of an ISAPI
DLL so that it can be accessed from the web.

I. Logging Data from the Instrument using serial I/O.

In order for data to be logged to the device, serial
communications with the Davis Instrument must be
established. Commands to read data or change settings on
the instrument must be sent using the Windows CE serial
API.

Fig. 2. Hardware Configuration.

Temperature, pressure and humidity are read using the
serial I/O functions.

A separate thread is responsible for communications with
the Davis Instrument. The purpose of creating a thread is to
make use of as much of the CPU’s time as possible [3]. This
thread sends bytes across the serial cable, waits for

acknowledgments and reads the results of commands.
Specific bytes are sent for specific tasks e.g. the byte
sequence ‘W’, ’R’, ‘D’, ‘0x00’, ‘0x00’, ‘0x44’, ‘0x52’,
‘0x0d’ followed by a ‘0x44’, ‘0x30’, ‘0x0d’ tells the Davis
Instrument to send the current temperature. The main thread
receives requests from DCOM clients and processes them.

Fig. 3. The SBC MediaGX board with the flat-panel display, keyboard and mouse. The flat-panel display is the one with the Arcom logo. The Davis
Instrument is to the left of the display.

J. Applications and User Interface

Applications that display the latest data on a browser have
been developed. Plots of the retrieved data are also generated
using MATLAB (see figures 5 and 6).

The DCOM client that is built into the ISAPI DLL on the
PC, displays the data and also accesses MATLAB through
OLE automation to generate plots of the data.

A second application displays data from an XML data
source that is accessed directly from the device, using HTTP.
A plot is generated as mentioned earlier using MATLAB.

Events that the user maybe interested in, such as high/low
temperatures, can be specified using an XSL style-sheet.
Alerts can be sent automatically using the style-sheet.

IV. CONCLUSION

Although several of the technologies available on the PC
platform such as ASP, ISAPI and COM are supported on the
CE platform, we found that these technologies are not readily
usable. However, this was a good start in working with
embedded operating systems and applications.

V. FUTURE WORK

Future work includes the use of new embedded operating
systems such as Windows CE .NET or Windows XP

Embedded on the device. There is also the possibility of
using an actual drifter as the measuring instrument and
demonstrating network connectivity using wireless protocols.

GLOSSARY

ADO – Active Data Objects, a technology used for database
access.

COM – Microsoft’s Component Object Model which is a
standard means of communication between objects.

DCOM – Distributed Component Object Model. A version of
COM where objects can be instantiated on remote machines.

EBX – A form factor that is about 5.5”x8”.

ISAPI – Internet Server Application Programming Interface,
an architecture for the development of interactive web-based
applications.

MSMQ – Microsoft Message Queue, a technology used in
asynchronous messaging applications.

OLE Automation – A technique where COM objects can be
accessed from a scripting environment such as a web-
browser.

SBC – Single Board Computer, a form factor that’s used in
developing embedded devices.

Fig. 4. Software architecture for the smart sensor - “SensorObject” is the DCOM server and “SensorISAPI” the DCOM client. The DCOM server is also
responsible for logging the data from the Davis Instrument. Plots are generated using MATLAB and OLE Automation on the host PC.

Windows CE – One of Microsoft’s embedded operating
systems.

XSL – Extensible style-sheet language; used to describe the
layout and format of XML data.

REFERENCES

[1] Introducing Windows CE 3.0,
http://msdn.microsoft.com/library,
Microsoft Corporation, 2001.

Fig. 5. The user interface to the SmartSensor application. The table shows logged data from the Davis Instrument. The sampling frequency can be changed
from here. The time on the instrument can also be set from this interface.

Fig. 6. A plot of temperature, pressure and humidity values from the Davis Instrument. This was generated using MATLAB.

[2] N. Grattan, M. Brain, Windows CE 3.0 Application
Programming. Prentice Hall Inc., 2001.

[3] Microsoft Windows CE 3.0 Kernel Services:
Multiprocessing and Thread Handling,
http://msdn.microsoft.com/library,
Microsoft Corporation, 2001

